The mapping torus group of a free group automorphism is hyperbolic relative to the canonical subgroups of polynomial growth

نویسندگان

  • F. Gautero
  • M. Lustig
چکیده

We prove that the mapping torus group Fn ⋊α Z of any automorphism α of a free group Fn of finite rank n ≥ 2 is weakly hyperbolic relative to the canonical (up to conjugation) family H(α) of subgroups of Fn which consists of (and contains representatives of all) conjugacy classes that grow polynomially under iteration of α. Furthermore, we show that Fn ⋊α Z is strongly hyperbolic relative to the mapping torus of the family H(α).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splittings of mapping tori of free group automorphisms

We present necessary and sufficient conditions for the existence of a splitting over Z of the mapping torus Mφ = F ⋊ Z of a free group automorphism φ, as well as some remarks on the boundary of Mφ in the hyperbolic case.

متن کامل

Polynomial Maps over p-Adics and Residual Properties of Mapping Tori of Group Endomorphisms

This paper is a continuation of paper [1] where we proved that for every linear finitely generated group G and any injective endomorphism φ of G, the mapping torus of φ is residually finite. The mapping torus of φ is the following ascending HNN extension of G: HNNφ (G) = 〈G, t | txt−1 = φ(x)〉 where x runs over a (finite) generating set of G. Probably, the most important mapping tori are mapping...

متن کامل

NILPOTENCY AND SOLUBILITY OF GROUPS RELATIVE TO AN AUTOMORPHISM

In this paper we introduce the concept of α-commutator which its definition is based on generalized conjugate classes. With this notion, α-nilpotent groups, α-solvable groups, nilpotency and solvability of groups related to the automorphism are defined. N(G) and S(G) are the set of all nilpotency classes and the set of all solvability classes for the group G with respect to different automorphi...

متن کامل

Internal Topology on MI-groups

An MI-group is an algebraic structure based on a generalization of the concept of a monoid that satisfies the cancellation laws and is endowed with an invertible anti-automorphism representing inversion. In this paper, a topology is defined on an MI-group $G$ under which $G$ is  a topological MI-group. Then we will identify open, discrete and compact MI-subgroups. The connected components of th...

متن کامل

Automorphisms of Hyperbolic Groups and Graphs of Groups

Using the canonical JSJ splitting, we describe the outer automorphism group Out(G) of a one-ended word hyperbolic group G. In particular, we discuss to what extent Out(G) is virtually a direct product of mapping class groups and a free abelian group, and we determine for which groups Out(G) is infinite. We also show that there are only finitely many conjugacy classes of torsion elements in Out(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008